United States Patent

US009052982B1

(12) 10) Patent No.: US 9,052,982 B1
Ogilvie 45) Date of Patent: Jun. 9, 2015
(54) ADAPTIVE SHRINKING SOFTWARE 5,881,292 A 3/1999 Sigal et al.
5,930,514 A 7/1999 Thompson et al.
: . : 5,933,646 A * 8/1999 Hendrickson etal. 717/169
(71) Applicant: ([)Jpsen Invention Network, Durham, NC 5937197 A §/1999 Jury
Us) 6,006,034 A 12/1999 Heath et al.
. . 6,094,679 A 7/2000 Teng et al.
(72) Inventor: John W. L. Ogilvie, Salt Lake City, UT 6,182,121 BL1* 1/2001 Wlaschincccccovenene. 709/215
(US) 6,347,398 B1* 2/2002 Parthasarathy et al. 717/178
6,442,548 B1* 8/2002 Balabine et al. /1
(73) Assignee: Open Invention Network, LLC, 6,938,205 Bl1* 82005 Hansonetal. ... 715/234
Durham, NC (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this ~ Oviatt, S. et al., “Integration and Synchronization of Input Modes
patent is extended or adjusted under 35 During Multimodal Human-Computer Interaction,” 1997.
Palen, L., “Groupware Adoption & Adaptation,” 1997.
US.C.154(b) by 0 days. Gentner, D. et al., “Simplified Applications for Network Computers,”
1997.
(21) Appl. No.: 14/158,132 Wood, A. et al., “CyberDesk: Automated Integration of Desktop and
. Network Services,” 1997.
(22) Filed: Jan. 17, 2014 Gutkauf, B., “Accounting for Individual Differences Through
GAMES: Guided Adaptive Multimedia Editing System,” 1997.
Related U.S. Application Data Rozier, E. et al., “Participatory Adaptation,” 1997.
L L (Continued)
(63) Continuation of application No. 09/167,899, filed on
Oct. 7, 1998, now Pat. No. 8,635,590. . .
Primary Examiner — Anna Deng
(51) Imt.ClL (74) Attorney, Agent, or Firm — Haynes and Boone, LL.P
GO6F 9/44 (2006.01)
(52) US.CL (57) ABSTRACT
CPC e GO6F 8/70 (2013.01) Methods, articles, signals, and systems are provided for adap-
(58) Field of Classification Search tively shrinking software. The software includes one or more
CPC ..coovees GOG6F 8/33; GOG6F 8/71; GOG6F 8/38 adaptive features. A tracking facility tracks use of the adaptive
USPC et 717/110 features, and when it is determined that a given feature is
See application file for complete search history. unwanted or unnecessary in the software configuration pre-
ferred by a given user, a separation facility separates the
(56) References Cited feature from the rest of the software. The feature is then

U.S. PATENT DOCUMENTS

5,263,174 A 11/1993 Layman
5,388,198 A 2/1995 Layman et al.
5,726,883 A 3/1998 Levine et al.
5,790,857 A 8/1998 Clifford et al.

archived or deleted. In this manner, resources such as disk
space are conserved, program load time and memory require-
ments are reduced, and user interfaces and supporting code
are tailored to meet the needs of particular users.

20 Claims, 7 Drawing Sheets

SHRINKER(S) 208, 308, 314, 414, 418

TRACKING FACILITY 600

USER IDENTIFICATION 608 1

SECURITY AND INTEGRITY MEANS §10

FEATURE ID, HISTORY, AND STATUS

614 |
614

|

|

[USAGE HISTORY MONITOR 812]
l

[_FEATURE ID, HISTORY, AND STATUS

]

FEATURE ID, HISTORY, AND STATUS 814 |

SEFARATION FACILITY 602

i SHARED CRITERIA 616]

| FEATURE-SPECIFIC CRITERIA 618 |

| FEATURE-SPECIFIC CRITERIA 618 |

FEATURE-SPECIFIC CRITERIA §18

| COMPRESSOR 620 |

| LOCAL ARCHIVER 622]

[REMOTE ARCHIVER 824]

| REMOVER 626 |

[LICENSING FACILITY BG4 |

DISTRIBUTION FACILITY 606 |

US 9,052,982 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Moon, Y., “Adaptive Agents and Personality Change: Complementar-
ity versus Similarity as Forms of Adaptation,” 1996.

Ramstein, C., “Adaptive User Interfaces With Force Feedback,”
1996.

Fel, S., “Glove-TalkIl: An Adaptive Gesture-To-Formant Interface,”
1995.

Page, S. et al., “User Customization of a Word. Processor,” 1996.
John, B. et al., “Using GOMS for User Interface Design and Evalu-
ation: Which Technique?” 1996.

Ullman, B., “Programming Under the Wizard’s Spell,” May 1998.
Alsop, S., “A Software Junkie Rejects Windows 98,” Jul. 20, 1998.
OpenDoc™ for Macintosh: An Overview for Developers, 1994.
Jesse Berst’s AnchorDesk postings, pp. 1-15, 1997.

PowerBASIC Revolt Against Bloatware, Jan. 7, 1997.

Destiny Software, 1997.

Pcwebopedia, pp. 1-7,1998.

Mossberg, W., “Personal Technology,” Wall Street Journal, p. BI,
Oct. 8, 1998.

Microsoft Windows and the Plug and Play Framework Architecture,
Mar. 1994.

Brockschmidt, K., Inside OLE (2d ed.), pp. 3-143, 1995.

Beitz, A., “Dynamic Software Reconfiguration,” no later than Sep.
22, 1998.

“The customized, digitized, have-it-your-way economy,” Fortune,
Sep. 28, 1998.

Allison, G. B., “Technology Update,” Sep. 1998.

Woller, R., “User Interface Management Systems: The CLIM per-
spective,” no later than Sep. 30, 1998.

“Microsoft Updates Office Suite, but it’s Not for the Little Guy,” Wall
Street Journal, Jun. 10, 1999.

Microsoft Office 2000 Guided Tom for IT Professionals, Jan. 1999.
Microsoft Office 2000 Product Enhancements Guide, Oct. 1998.
World Wide Web using Lynx, Sep. 2, 1997.

New Business/Underwriting, 1998.

SAP R/3: Working with R/3 3.0, no later than Jun. 23, 1999.

The SAP R/3 Handbook, pp. 442-451, 1997.

Abacus 21, pp. 1-3, portions from 1995, remainder no later than Jun.
23, 1999.

Coolidge, D. S, “Word 2000: Evolution Triumphs Over Further
Revolution” (especially sections on “Smart menus™), accompanying
article on Office 2000 by J. A. Eidelman, both May/Jun. 1999.
Kvitka, Andre, “MS Office 2000 impressive for workgroups,” (espe-
cially section on “Menus that learn”), Oct. 1998.

* cited by examiner

U.S. Patent Jun. 9, 2015 Sheet 1 of 7 US 9,052,982 B1

E] 102
= Z
104 ~NI= OTHER NETWORK(S)
yan ¢
77 |

COMPUTER 200

PROGRAM 202
| ADAPTIVE FEATURES 204 |

| PERMANENT FEATURES 206 |
B SHRINKER 208]

FIG. 2

COMPUTER 300
PROGRAM 306
| ADAPTIVE FEATURES 204 |

| LOCAL SHRINKER 308 || [« [COMPUTER 304
|| REMOTE
COMPUTER 302 SHRINKER 314
PROGRAM 310
| ADAPTIVE FEATURES 312 |
N\ 106

| LOCAL SHRINKER 308 | | |«

FIG. 3

U.S. Patent Jun. 9, 2015 Sheet 2 of 7 US 9,052,982 B1

COMPUTER 400 COMPUTER 402
PROGRAM 408 ADAPTIVE
| ADAPTIVE FEATURES 204 ||| | |[FEATURES 416
|PERMANENT FEATURES 208] REMGTE
. " | SHRINKER 418
PROGRAM 408
| ADAPTIVE FEATURES 410 |
COMPUTER 404
|PERMANENT FEATURES 412/ AOAPTIVE
FEATURES 420
| LOCAL SHRINKER 414 | e
. REMOTE
106 —0"~" "l | SHRINKER 418
FIG. 4

ADAPTIVE FEATURES 204, 312, 410, 416, 420
VISIBLE FEATURE 500

| INTERFACE 502 | | CODE 504 |

HIDDEN FEATURE 506
| CODE 504 |

FEATURE GROUP 508
VISIBLE FEATURE 500 |

VISIBLE FEATURE 500 |
HIDDEN FEATURE 508 |
HIDDEN FEATURE 506 |
HIDDEN FEATURE 506 |

g f— ey [e— T

FIG. 5

U.S. Patent

Jun. 9, 2015 Sheet 3 of 7

US 9,052,982 B1

SHRINKER(S) 208, 308, 314, 414 418

TRACKING FACILITY 800

USER IDENTIFICATION 608

SECURITY AND INTEGRITY MEANS 610

USAGE HISTORY MONITOR 612

FEATURE ID, HISTORY, AND STATUS 614

FEATURE ID, HISTORY, AND STATUS 614

FEATURE ID, HISTORY, AND STATUS 614

SEPARATION FACILITY 802

SHARED CRITERIA 816

FEATURE-SPECIFIC CRITERIA 618

FEATURE-SPECIFIC CRITERIA 618

FEATURE-SPECIFIC CRITERIA 818

COMPRESSOR 620

LOCAL ARCHIVER 822

REMOTE ARCHIVER 624

REMOVER 626

LICENSING FACILITY 604

DISTRIBUTION FACILITY 608

FIG. 6

U.S. Patent Jun. 9, 2015 Sheet 4 of 7 US 9,052,982 B1

File Edit View Insert tFormat| Tools Table Window /ﬂelp

706 —/ 708 —/ | Eont 710
Line
Paragraph
Tabs
Borders and Shading
Columns
Change Case
Drop Caps
Bullets and Numbering
__/ EZFormat
714 Heading Numbering
718 — Styles
Watermark
Frame
Image
/ /
41 {

y 7 7
702 — 704 —/ 712 / 700 —
FIG. 7

PROGRAM 408
ADAPTIVE FEATURES 410

| EZFORMAT INTERFACE 800 | EZFORMAT CODE 802 |
| COLUMNS INTERFACE 804 | COLUMNS CODE 806 |

PERMANENT FEATURES 412
| INTERFACE ADAPTER 808 | | BASIC 1/0 812 |
| CODE ADAPTERB10 | | MAIN LOOP 814 |

FIG. &8

U.S. Patent Jun. 9, 2015 Sheet 5 of 7 US 9,052,982 B1

File Edit View Insert {Format| Tools Table Window

706 —/ 708 —/ |Font

Line

Paragraph

Tabs

Borders and Shading
Columns

Change Case

Drop Caps

Bullets and Numbering
Heading Numbering

800 -/

L
<1 Vi] >

702 —/704 _/ 700 —/
FIG. 9

| PROGRAM 408
| | ADAPTIVE FEATURES 410
| COLUMNS INTERFACE 804 | COLUMNS CODE 806 |

PERMANENT FEATURES 412
| INTERFACE ADAPTER 808 | | BASIC 1/0 812 |
| CODEADAPTERS810 | | MAIN LOOP 814]

FIG. 10

U.S. Patent Jun. 9, 2015 Sheet 6 of 7 US 9,052,982 B1

TRIGGER SEARCH FOR REMOVAL CANDIDATES 1100

i

SEARCH FOR REMOVAL CANDIDATES 1102

IDENTIFY FEATURES USED ONLY SOON
AFTER THEIR INSTALLATION 1104

, :
IDENTIFY FEATURES TAGGED FOR
REMOVAL BY USER 1106

y
IDENTIFY FEATURES INSTALLED LONG
AGO BUT NEVER USED 1108

v
IDENTIFY FEATURES REQUIRING
HARDWARE THAT 18 NOT PRESENT 1110

!

IDENTIEY FEATURES REQUIRING A
LICENSE THAT WAS NOT GRANTED 1112
,,,,,,,,,,,,,,,,,, i
" IDENTIFY FEATURES OUTSIDE A STABLE

SET OF USED FEATURES 1114

v

IDENTIFY FEATURES TYPICALLY UNUSED
BY USER TYPE OR DEPARTMENT 1118

SELECT FEATURE(S) TO REMOVE 111
REMOVE SELECTED FEATURE(S) 1120

| ARCHIVE OR DELETE FEATURES 1122 |
| UPDATE P;OGRAM 124
| NOTIFY REMOT;SHRINKER{S) 126 |
| UPDATE CONFIGU;AT!ON RECORD 1128 |

FIG. 11

U.S. Patent Jun. 9, 2015 Sheet 7 of 7 US 9,052,982 B1

INTER-SHRINKER SIGNAL 1200
SECURITY AND INTEGRITY INFORMATION 1202
CREDENTIAL(S) 1204 i DIGITAL SIGNATURE(S) 1208 |

COMPUTER IDENTIFICATION(S) 1208
MANAGED COMPUTER(S) 1210]

MANAGER COMPUTER(S) 1212 I

OPERATION(S) 1214

PROGRAM-CENTRIC RECORD 1216
| FEATURE INFO 1218 | | FEATURE INFO 1218 |

———

o)
| FEATURE INFO 1218 | | FEATUREINFO 1218 |

FEATURE-CENTRIC RECORD 1220
| PROGRAM INFO 1222 | | PROGRAM INFO 1

1222
| PROGRAM INFO 1222 | | PROGRAM INFO 1222

2 |
]

ADAPTIVE FEATURE INTERFACE(S) AND CODE(S) 1224

| INTERFACEAS502, 1226 | CODEA5D4 1226 |
| INTERFACEB502,1228 | CODEBS504,1228 |

| CODECS504,1230 |

[ADDITIONAL INFORMATION 1232 |

FlG. 12

US 9,052,982 B1

1
ADAPTIVE SHRINKING SOFTWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 09/167,899, filed Oct. 7, 1998, now U.S. Pat. No. 8,635,
590, issued on Jan. 21, 2014, the entire disclosure of which is
incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to the technical goal of reduc-
ing the demands placed on computer system resources and on
users by large, complex software programs, and more par-
ticularly to methods, systems, signals, and articles of manu-
facture for adaptively shrinking software to benefit consum-
ers by identifying and then archiving or eliminating portions
of large programs which are not being actively used by a
particular person.

TECHNICAL BACKGROUND OF THE
INVENTION

Under the direction of experienced and knowledgeable
people, software can help doctors identify the source of an
ailment, help banks handle millions of transactions accu-
rately, help students search digital libraries, help artists tell
stories and engineers build safer structures, and do a thousand
other things to entertain, protect, and assist us. Despite the
shortcomings of computer technology, automation and other
uses of software have generally made the world a better place
by facilitating advances in medical research, civil engineer-
ing, telecommunications, and other areas that touch our lives
daily in a thousand ways we often take for granted. Nonethe-
less, software is far from perfect.

For an average consumer, one ofthe most frustrating trends
in software development and commercialization has been the
tendency for software programs to include more and more
features over time. This tendency is sometimes called “fea-
ture creep” and examples are sometimes referred to as “bloat-
ware.”

Bloatware requires ever larger amounts of hard disk and
RAM storage, and ever faster processors. Even worse, it
burdens program users with a growing tangle of commands
and options and preferences and other features, often sym-
bolized by blocks of buttons, icons, tabs, menu items, and
other visual paraphernalia. Some of the new features in word
processors, spreadsheets, communications software, and
other widely used applications may be useful to many people.
But more often than not, people use only a small fraction of
the features available in a given program. The rest of the
features are just inconvenient noise in one’s mental map of the
software and wasted space on one’s disk or in system
memory.

Several approaches have been tried to reduce the problems
caused by continually adding new features to programs. One
approach replaces arcane commands and command line
options, such as those used in UNIX or DOS operating system
command interpreters, with graphical user interfaces of
menus, folders, and other metaphors, like those used in the
Apple Macintosh and Microsoft Windows environments.
This makes it easier to identify commands and other features,
since one can look them up by flipping through menus instead
of committing them to memory. But a program’s menu hier-
archy can still become quite large and confusing as additional

10

25

40

45

55

2

features and corresponding menu commands or state vari-
ables (sometimes called “options™ or “preferences”) are
added to the program.

More generally, many studies have been done to determine
the desirability of different user interface designs. For
instance, mouse-driven designs have been compared with
keyboard-driven designs and with designs that use a combi-
nation of keyboard and mouse input. Different color combi-
nations have also been tested. Some of these design attempts
have included user models, logs, or other means for recording
the behavior of an individual user for subsequent analysis by
the interface designers.

Some user interface designs would replace mouse-driven
menus with a voice-driven interface, whereby the user enters
commands and data by speaking it instead of using a mouse,
light pen, keyboard, touch-screen, or similar input device.
This could require users to once again begin memorizing the
commands they wish to use, or else make it necessary to look
up commands with some help facility. Alternatively, a voice-
driven interface could require sophisticated speech recogni-
tion and natural language interpretation capabilities. Neither
approach directly addresses the problem of “wasted” fea-
tures, namely, program capabilities which are not needed by
a given user and thus consume storage space, processor
cycles, and other resources without benefiting that user.

Another approach simply provides users with smaller pro-
grams containing fewer features. In some cases, such a mini-
malist program is accompanied by a promise that the vendor’s
efforts will be put into making the existing features faster,
more accurate, more efficient, more reliable, more readily
available, and so forth, instead of putting limited development
resources to work on new features. An unspoken (or some-
times spoken!) assumption is that other vendors add features
simply to justify a new release to generate additional revenue.

Providing users with a small but carefully selected feature
set is a worthwhile approach to reducing bloatware. Unfortu-
nately, not everyone agrees on which features belong in a
minimalist program’s reduced feature set. Feature creep
seems almost inevitable, either by continual expansion of the
minimalist program or by abandonment of it altogether in
favor of a larger program that has one or more desired features
which are not found in the minimalist program.

Yet another approach focuses on making the interface itself
adaptable or customizable by users. For instance, users may
be allowed to change color palettes, modify menus, create
macros, and/or to hide or reposition toolbars. Some of these
customizations could be used to reduce interface complexity.

But customizing an interface does not necessarily reduce
interface complexity, much less reduce program size. For
instance, macros may be additional features rather than sub-
stitute features, so that they actually increase the feature set
presented to the user. Toolbar and menu visibility control is
only helpful if the interface features are grouped such that a
user wants to see all of them or none at them at a given time.
The process of hiding features or making them visible must
also be easy and convenient.

Moreover, even when customized interfaces hide features
from immediate view, the underlying code to implement
those features is still part of the program. The program itself
is not any smaller. It simply appears at first glance to have
fewer features.

An approach to feature selection which is used by many
software vendors involves gradual classification of program
features through feedback provided by the program’s users.
This feature selection process begins with the design, imple-
mentation, and debugging of the first version of the program.
The program is released to users, and sooner or later the

US 9,052,982 B1

3

vendor receives and reviews comments from the users. In
response, the source code is modified, the executable is
rebuilt and debugged, and the new version is released. Com-
ments on the new version are received and reviewed, the
source is modified again, and the cycle of revisions and new
versions continues. Initially the program’s users are the pro-
gram designers and the programmers themselves. Later, the
users include alpha and beta testers, and finally, they include
people who paid for the right to use the software. Over the
course of several (sometimes many) versions, the vendor
learns which features are the most popular, and modifies the
program accordingly.

However, selecting features based on user comments in
this manner has several major drawbacks. First, it can take
months or even years. Second, because the process takes so
long and is subject to influence from so many sources, the
feature set may never stabilize. Third, a user who frequently
uses a feature which is not popular with other users may lose
access to that feature in a new version. This is particularly
frustrating if the new version contains improvements not
found in the current version, forcing the user to choose
between the improvements in the new version and the fre-
quently used feature in the old version. Finally, for a variety of
reasons, many vendors have historically chosen to add fea-
tures far more often than they chose to remove them, leading
to the present bloatware problem.

Extensive efforts have been directed toward making it
easier to add code to an existing program. Patching and other
dynamic reconfiguration techniques; software components
ranging from COM and OLE and OpenDoc components to
* DLL files to Java components to Ada and Modula-2 pack-
ages and modules; better networking in general and elec-
tronic software distribution in particular; enlarged hard drives
and falling hardware prices; and improved software develop-
ment environments and tools all make it continually easier to
add code and features to software. Although the ability to add
features and the ability to fix bugs with little or no intervention
by users can be beneficial, these abilities do not address the
problem of dealing with features that are unwanted or
unneeded by a given user.

Software is used in various contexts to gain information
about various types of user preferences. For instance, the
usage of an entire program or a software component such as
a Java applet may be monitored to permit metered licensing
based on the number of concurrent users of the program or
component and/or the length of time during which copies of
the program or component are loaded for execution. Such
monitoring provides a general indication about the popularity
of the program or component as a whole, but it does not say
much about a given user’s thoughts concerning individual
features.

In another context, software agents, cookies, demographic
databases, and other means are used to track user preferences
on books, music, discussion topics, and other things. Some-
times the information is merely used for targeted marketing;
sometimes it is used to make guesses about which products a
user might like. Regardless, however, this approach does not
track individual software features to determine which ones
are wasted from a given user’s point of view.

In yet another context, programmers use tools such as
debuggers and profilers to identify sections of source code
that consume large amounts of processor time or other
resources, so that opportunities for improved efficiency are
more readily identified. However, any resulting changes are
made in a master copy of the program which is eventually
distributed to many users, so individual user preferences are
not addressed.

20

40

45

4

In short, it would be an advancement to provide a new
approach to software design which promptly and conve-
niently provides software users with the functional features
they desire, without burdening their computers and their
minds with unwanted features. Such an approach is disclosed
and claimed herein.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to methods, articles, signals,
and systems for reducing software complexity seen by a
program’s user and reducing resource demands on the user’s
system. Over time, a program according to the invention will
adapt itself to a particular user by archiving or completely
eliminating features the user does not use. This adaptive
shrinking is achieved by meeting three main requirements.

First, the software program is designed for easy separation
of one feature from another, or at least for easy separation of
a group of features from the other features. The features may
be embodied in anything from a set of operating system tools
and utilities to a set of word processing or spreadsheet
manipulation routines; the invention works both with con-
sumer applications and with operating systems or other pro-
grams that generally interface directly with other pieces of
software rather than with people. In each case the software is
extremely modular, in the sense that code for one feature
generally need not be present on the user’s computer to run
another feature on the computer.

The second main requirement is a facility for tracking
which features are used by which users to identify candidates
for archiving or removal. Although the concept of tracking
features according to the invention is new, technology for
tracking features will be readily prepared by those of skill in
the art. For instance, simple logging of commands has been
done to create demonstrations by playing back the log, and to
help automate debugging by using the log as a test suite to
check program performance after program modifications are
made.

The third and final main requirement is a facility for sepa-
rating features and disposing of them. Separation may be
accomplished while the program is running, or features may
be marked first and then separated out the next time the
program starts. The separated (unused) features may be
archived in the sense that they are on disk but not loaded, to
give the user one (or more) last chance to start using them. Or
they may be archived in the sense that they are stored in
compressed form, or stored only at a remote location. The
separated features may also be eliminated by removing them
completely from the user’s local disk (possibly with the
option of reloading them from the vendor if they are needed
later). In either case, the program is modified to run without
the separated features. The menu entries for separated fea-
tures are not merely grayed out; they are removed. Moreover,
code such as *.DLL or COM or OLE components used only
by the separated features is not loaded into memory and is not
invoked (at cost of a runtime error) by the program.

In some embodiments, features may be removed one-by-
one; in some they may be removed in groups which corre-
spond to their organization in the menu hierarchy. For
instance, in one embodiment of an adaptive application such
as a word processor or spreadsheet, each adaptive feature in
an Insert menu, a Format menu, and a Tools menu is sepa-
rately removable, while the adaptive features in a Graphics
menu and a Table menu are removable only as a group. In
place of, or in addition to, tracking feature use by individuals,
use may be tracked by work groups or departments. In this

US 9,052,982 B1

5

manner, features needed by no user in a specified set of users
can be identified and eventually removed.

One inventive approach combines the identification and
removal of unwanted features with electronic distribution of
adaptive features. Individual software features or small sets of
closely related features are downloaded over a network and
presented to users on a trial basis. If a given user uses a given
feature enough to show more than mere curiosity, then that
feature is left in place for further use. Other features, which
are used only a few times or not at all, are automatically
removed. Formally, this could be called an “iterative aggre-
gation and customization method.” Informally, the idea is to
let users load up on trial features, knowing that only the
features they want will remain on their systems. Such feature
distribution can be combined with feature-by-feature licens-
ing that requires payment only if the user shows a desire to
keep a given feature by continuing to use the feature after the
trial period. Unwanted features are automatically removed
from the user’s system and the user is not required to pay for
them.

In short, the novel software adaptively shrinks over time to
eliminate unused features. Much effort has gone into making
it easier to add functionality to software, such as by program-
ming language design, program development environments,
programming paradigms, and “plug-and-play” modular
architectures. Too little effort has been spent on ways to make
software smaller and simpler without sacrificing flexibility or
the needs of individual users. The present invention provides
an approach which shrinks software while adapting it to
reflect the needs and habits of a particular user. Other aspects
and advantages of the present “shrinkware” will become
more fully apparent through the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

To illustrate the manner in which the advantages and fea-
tures of the invention are obtained, a more particular descrip-
tion of the invention will be given with reference to the
attached drawings. These drawings only illustrate selected
aspects of the invention and thus do not limit the invention’s
scope. In the drawings:

FIG. 1 is a diagram illustrating one of many possible com-
puter networks and several computers suitable for use, as a
network or as individual systems, according to the present
invention.

FIG. 2 is a diagram illustrating a computer configured for
individual use according to the present invention.

FIG. 3 is a diagram illustrating a network of at least three
computers configured for use according to the present inven-
tion, with two of the computers each containing adaptively
shrinking software which is managed in part by the third
computer.

FIG. 4 is a diagram illustrating a network of at least three
computers configured for use according to the present inven-
tion, with two of the computers each providing adaptive fea-
tures and assisting in the management of two adaptively
shrinking programs which are located on the third computer.

FIG. 5 is a diagram further illustrating adaptive software
features according to the present invention.

FIG. 6 is a diagram further illustrating tracking and sepa-
ration facilities for managing adaptive software features
according to the present invention.

FIG. 7 shows a portion of a user interface of a word pro-
cessor that is configured according to the invention to include
adaptive features.

35

40

45

6

FIG. 8 is a diagram corresponding to FIG. 7, showing
certain adaptive features and also showing several other com-
ponents of the word processor to provide context.

FIG. 9 shows the word processor user interface of FIG. 7
after the removal of several adaptive features.

FIG. 10 is a diagram corresponding to FIG. 9, showing
components of the word processor which were not removed.

FIG. 11 is a flowchart illustrating feature selection methods
of the present invention.

FIG. 12 is a diagram illustrating components of signals
between two or more computers configured according to the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In describing methods, devices, signals, and systems
according to the invention, the meaning of several important
terms is clarified, so the claims must be read with careful
attention to these clarifications. Specific examples are given
to illustrate aspects of the invention, but those of skill in the
relevant art(s) will understand that other examples may also
fall within the meaning of the terms used, and hence within
the scope of one or more claims. Important terms are defined,
either explicitly or implicitly, both here in the Detailed
Description and elsewhere in the application file.
Computers and Networks Generally

The invention may be used to adaptively shrink software
running on an individual computer or to adaptively shrink
software running on one or more computers in a network. The
shrinking is performed to better reflect the preferences of
individual software users. A user may be a person, or it may be
a software task or agent or other computer process acting
legitimately on behalf of a person. Adaptive shrinking may
also be performed on behalf of a defined subset of users, such
as a group having certain access permissions, or a department.

FIG. 1 illustrates a network 100 which is one of the many
possible networks suitable for adaptation and use according
to the present invention. Suitable computer networks 100
include various networks, such as local area networks, wide
area networks, metropolitan area networks, and/or various
“Internet” or IP networks such as the World Wide Web, a
private Internet, a secure Internet, a value-added network, a
virtual private network, an extranet, an intranet, or even stan-
dalone machines which are updated by physical transport of
media (a so-called “sneakernet”).

The network 100 may encompass smaller networks and/or
be connectable to other networks 102. For instance, the net-
work 100 may be connectable to other networks 102 such as
LANs or WANSs or portions of the Internet or an intranet,
through a gateway or similar mechanism, thereby forming a
larger network which is also suitable for use according to the
invention. In many cases, a geographically dispersed net-
work, up to and including a global computer network such as
the Internet, is preferred because it tends to increase the range
of software features users can choose from. However, more
localized networks may also be used.

Each network 100 includes at least two computers. For
instance, the illustrated network 100 includes a server 104
connected by network signal lines 106 to several network
clients 108. Other suitable networks may contain other com-
binations of servers, clients, and/or peer-to-peer nodes, and a
given computer may function both as a client and as a server.

The computers 104, 108 may be laptop computers, work-
stations, disconnectable mobile computers, servers, main-
frames, network computers or lean clients, personal digital
assistants, or a combination thereof. Each computer 104, 108

US 9,052,982 B1

7

includes at least a processor and a memory; the computers
may also include various input devices and/or output devices.
The computers 104, 108 may be uniprocessor, multiproces-
sor, or clustered processor machines. A given processor may
include a general purpose device such as a 80x86, Pentium
(mark of Intel), 680x0, or other “off-the-shelf” microproces-
sor. The processor may include a special purpose processing
device such as an ASIC, PAL, PLA, PLD, or other customized
or programmable device. The memory may include static
RAM, dynamic RAM, flash memory, ROM, CD-ROM, disk,
tape, magnetic, optical, or other computer storage medium.
The input device may include a keyboard, mouse, touch
screen, light pen, tablet, microphone, position sensor, pres-
sure sensor, thermal sensor, or other input hardware with
accompanying firmware and/or software. The output device
may include a monitor or other display, printer, speech or text
synthesizer, solenoid, switch, signal line, or other process
controller.

The network 100 may include communications or net-
working software such as the software available from Novell,
Microsoft, Artisoft, and other vendors, and may operate using
TCP/IP, SPX, IPX, and other protocols over twisted pair,
coaxial, or optical fiber cables, telephone lines, satellites,
microwave relays, modulated AC power lines, physical media
transfer, and/or other data transmission “wires” known to
those of skill in the art. Standalone computers (workstations,
laptops, personal digital assistants, or others) 104, 108 may
also be configured according to the invention; a network is
present in many embodiments but is not required in every
embodiment.

In one embodiment, at least one of the computers 104, 108
is capable of using a floppy drive, tape drive, optical drive,
magneto-optical drive, or other means to read a storage
medium. A suitable storage medium includes a magnetic,
optical, or other computer-readable storage device having a
specific physical configuration. Suitable storage devices
include floppy disks, hard disks, tape, CD-ROMs, PROMs,
random access memory, flash memory, and other computer
system storage devices. The physical configuration repre-
sents data and instructions which cause a computer system to
operate in a specific and predefined manner as described
herein. Thus, the medium tangibly embodies a program, func-
tions, and/or instructions that are executable by computer(s)
to adaptively shrink software substantially as described
herein.

Suitable software languages and tools to assist in imple-
menting the various devices, systems, and methods of the
invention are readily employed by those of skill in the perti-
nent art(s) using the teachings presented here and program-
ming languages and tools such as Java, Pascal, C++, C, data-
base languages, APIs, SDKs, assembly, firmware, microcode,
and/or other languages and tools.

A Configured Computer

FIG. 2 illustrates a computer 200 configured for software
feature selection according to the invention. The computer
200 may be one of the computers 104 or 108 in a network such
as the network 100, or the computer 200 may be a standalone
computer.

A program 202 on the computer 200 includes one or more
adaptive features 204, zero or more permanent features 206,
and a shrinker 208. The program 202 may be an application
program such as a word processor, spreadsheet, presentation
or paint or other graphics program, contact manager, database
manager, an email or groupware program, or web browser. It
may be a standalone application program or it may be inte-
grated within an operating system. Indeed, the program 202
may itself be part or all of an operating system, file system,

10

15

20

25

30

35

40

45

50

55

60

65

8

BIOS, or other piece of system software. It may be a standa-
lone program which communicates rarely or never with like
programs, or it may be a collaborative program used by a
group, or it may be part of an integrated suite of applications.
Regardless of the type of services provided by the program
202, however, it must be capable of adaptive feature selection
as described herein; the program 202 may not be a single
indivisible executable whose features are presented to users
in an all-or-nothing manner.

The adaptive features 204 of the program 202 are those
features which can be selected for removal from the program
202 by the shrinker 208. In some embodiments, adaptive
features 204 may also be added to the program 202. However,
added adaptive features 204 are subject to later removal by the
shrinker 208.

The choice of which features are adaptive and which are
permanent rests, at least initially, with the designer of the
program 202. However, those of skill in the art will appreciate
the following observations.

First, features which obtain necessary input or provide
necessary output are best implemented as permanent features
206 rather than adaptive features 204. Examples include file
1/O and printer and screen output in most application pro-
grams. However, features that are often considered necessary
can be optional in some situations. For instance, if the pro-
gram 202 is tailored sufficiently to its users, no Help feature is
needed. Likewise, if a given computer has no floppy disk
drive (communicating instead by other removable media and/
or by a network link), then no floppy disk I/O routines are
needed. Assumptions about what code is necessary should be
rigorously identified and examined, with the goal of making
conscious design decisions that tend to favor the implemen-
tation of features as adaptive rather than permanent.

Second, features which are presently shared by different
programs are good candidates for adaptive features 204.
Examples include spell checkers, code to insert a spreadsheet
in some other type of document, and many operating system
functions. If such code is not needed by a given user, then
removing it will make the user’s system faster and easier to
use, and will delay the time at which a larger hard drive or
faster processor or more memory must be purchased.

Third, systems which are used by different people for dif-
ferent purposes will provide correspondingly small user ben-
efits through adaptive feature selection. The set of features
used is less likely to stabilize enough to identify good candi-
dates for removal, and there could be many more situations
when a desired feature was removed just before the next user
tries to use it. Even if the feature is restored or replaced, the
cost incurred includes system overhead and user frustration.

Fourth, suppose a feature appears to be good candidate for
implementation as an adaptive feature 204 because it is rarely
used, and suppose the feature’s placement in the program 202
interface is relatively obscure. It may be that the feature
would be used more, and hence be a good candidate for
implementation as a permanent feature 206, if the program
202 interface were designed differently. This may be tested by
implementing the feature as an adaptive feature 204 and
explicitly drawing the user’s attention to it. If the feature
continues to see little or no use, it will be removed by the
shrinker 208. On the other hand, if the feature sees a dramatic
increase in use by many users, it may be added tp the set of
permanent features 206 in conjunction with a revised pro-
gram 202 interface that makes the feature more accessible.

Finally, the usage tracking facilities described here can be
used to track permanent features 206 in addition to tracking
adaptive features 204. Indeed, one method of implementing
the program 202 includes beginning with a version in which

US 9,052,982 B1

9

all features are permanent, tracking usage with a shrinker 208
or other means, and then re-implementing the little-used and/
orunused features as adaptive features 204 in a new version of
the program 202.

The shrinker 208 monitors feature usage and eventually
separates out unused adaptive features 204. A given shrinker
may be implemented with one or more scopes of responsibil-
ity. Thus, it may be part of an application program which is
responsible only for adaptive features 204 in that program.
The shrinker may be a permanent feature of the program.
Alternatively, the shrinker may be a separate component of a
program 202, in a configuration like that shown in FIG. 2. In
that case, the shrinker 208 may eventually remove itself when
it is no longer being used.

A given shrinker may also be implemented as a back-
ground process which manages adaptive feature selection in
multiple applications 202. A shrinker which is an integral part
of a local operating system on a computer could likewise
perform adaptive feature removal on several application pro-
grams on that computer. On a network, a shrinker may have an
even broader scope of responsibility by operating as a net-
work utility which manages (tracks and shrinks) multiple
applications and other programs on multiple computers in the
network. FIGS. 3 and 4, which are discussed further below,
illustrate shrinkers and adaptive feature selection in a network
such as the network 100.

Atthe other end of the spectrum, a shrinker may be embed-
ded in one or more individual or grouped library modules,
packages, cabinets, files, or other program components. That
is, shrinking may be localized so that a feature or a closely
related group of features includes code for tracking its own
use and for removing itself (politely or not, with a flourish or
not) when it is apparently no longer needed or wanted. In
general, however, a feature should not be granted permission
to remove other features. Only an authorized shrinker should
be permitted to remove other code.

Certificates, credentials, passwords, tokens, keys, digital
signatures, and other familiar authentication and access con-
trol tools and techniques may be used to authenticate the
shrinker(s) in a system. They may also be used to prevent
unauthorized access to, modification of, or removal of code
which implements adaptive features. Those of skill in the art
will readily apply familiar or novel security and integrity
techniques to shrinkers and adaptive features according to the
present invention.

Configured Networks

FIGS. 3 and 4 illustrate two of many possible network
configurations according to the invention. FIG. 3 shows two
managed computers 300, 302 and a manager computer 304.
An adaptively shrinkable program 306 on the computer 300
includes adaptive features 204 and a local shrinker 308.
Another adaptively shrinkable program 310, located on the
computer 302, includes other adaptive features 312 and
another instance of the local shrinker 308. The manager com-
puter 304 includes a remote shrinker which communicates
with the local shrinker 308 instances over a network link or
other “wire” 106.

In the illustrated system the two programs 306, 310 each
have a different set of adaptive features 204, 312, respectively,
but in other embodiments the sets overlap or are identical.
Likewise, each illustrated program 306, 310 lacks any per-
manent features, but in other embodiments either or both
programs have one or more permanent features which cannot
be removed by the shrinker 308. Finally, other embodiments
may contain one or more managed computers, each having

10

15

20

25

30

35

40

45

50

55

60

65

10

one or more programs containing one or more adaptive fea-
tures that are managed by a local shrinker 308 and the remote
shrinker 314.

In some embodiments of the FIG. 3 system, the computer
304 serves as a repository or backup archive for removed
features, in case a user needs to restore a feature after the
feature has been removed locally. Each local shrinker 308
tracks adaptive features on the local computer 300, 302 and
separates out features which are not being used. The local
shrinker 308 consults the remote shrinker 314 to determine
the disposition of each feature 204 or 312 that has been
separated. If the remote shrinker 314 has an archived copy of
the separated feature, then the local shrinker 308 simply
deletes the feature from the local computer. If the remote
shrinker 314 does not have an archived copy of the separated
feature, then the local shrinker 308 sends the feature to the
remote shrinker 314 and deletes the separated feature from
the local computer after the remote shrinker 314 has archived
it.

In some embodiments of the FIG. 3 system, the computer
304 serves as a feature preferences database server for mobile
users. Suppose a given user is mobile, using computer 300 at
one session and computer 302 at another session. The local
shrinkers 308 track use of the adaptive features by the user on
the computers 300, 302; a user ID or other means identifies
the user to the local shrinkers 308 at each session. The user’s
preferences are stored in a shared configuration file or other-
wise transmitted to the manager computer 304; signals
between managed and manager computers are discussed fur-
ther in connection with FIG. 12. When the user logs in at a
given computer, the local shrinker 308 obtains the user’s
current feature preferences from the manager computer 304
and adds or removes features accordingly to configure the
program to be used.

In some embodiments of the FIG. 3 system, the computer
304 serves as a collecting point for information about feature
selection. The local shrinkers 308 transmit feature selection
datato the remote shrinker 314; suitable signal formats for the
transmission are discussed in connection with FIG. 12. The
remote shrinker 314 collates the data, optionally searches for
patterns, and makes the results available to the local shrinkers
308.

Feature selection data may be as simple as the identity and
basic status (in use or separated) of each adaptive feature 204
or 312. Alternatively, the feature selection data may include
more detail, such as the date the feature was first installed, the
user 1D, the feature version number, licensing status (trial
period, license accepted, license declined), related features or
feature group definitions, and other data.

Patterns to search for include rapid changes in demand for
a feature after another feature or other software is installed,
statistical patterns that correlate certain features with certain
work groups or departments, and statistical patterns that cor-
relate certain features with certain hardware configurations or
platforms. Patterns may also provide an early warning of
program bugs, since defects in an implementation of a given
feature may be located in response to an investigation trig-
gered by an unexpectedly high rate of removal of the feature.

Feature selection data and patterns can be used by local
shrinkers 308 to determine which adaptive features to
remove. For instance, if a computer is in a work group or has
a system configuration that correlates highly with use of a
particular adaptive feature, then other features may be given
higher priority for removal, even though the feature in ques-
tion is not being used on the computer in question.

FIG. 4 shows one managed computer 400 and two manager
computers 402, 404. Two adaptively shrinkable programs

US 9,052,982 B1

11

406, 408 on the managed computer 400 each include adaptive
features 204, 410 and permanent features 206, 412, respec-
tively. A local shrinker 414 on the managed computer 400
communicates over the network link 106 with the manager
computers 402, 404. Each manager computer 402, 404 has a
repository of adaptive features 416, 420 and an instance of a
remote shrinker 418. In other embodiments of the FIG. 4
system there are one or more adaptive programs on one or
more managed computers which communicate with one or
more manager computers. The adaptive features on the vari-
ous computers may be distinct, or they may overlap or even be
identical. Some or all of the adaptive programs may lack any
permanent features. Finally, the local shrinker(s) may be
implemented on a feature-by-feature, program-by-program,
computer-by-computer, or even on a network-by-network
basis. One network-by-network shrinker embodiment
includes roaming agents which travel around the network
tracking feature use and separating unused features.

In some embodiments of the FIG. 4 system, the manager
computers 402, 404 “push” new adaptive features onto the
managed computer 400. As a result, a user may find new
features in an adaptive program from time to time. If the
features see continued use after an initial trial period, they
remain in the program (however, their continued use may be
contingent on the user’s agreement to license terms and con-
ditions). If the new features are not of use, they are automati-
cally removed by the local shrinker 414. Unlike conventional
demonstration software, which merely disables itself after the
trial period ends, demonstration adaptive features remove
themselves to avoid cluttering the user’s computer if they are
not wanted.

Adaptive Features

FIG. 5 further illustrates several aspects of the adaptive
features discussed herein. An adaptive feature may be a vis-
ible feature 500 which includes both a user interface portion
502 and a supporting code portion 504, or it may be a hidden
feature 506 which lacks a user interface portion. For instance,
in a word processor a spell checker feature implemented as an
adaptive feature would typically be a visible feature 500
having at least a menu entry and a dialog box in its interface
portion 502 and having at least code for searching a dictionary
in its code portion 504. If the spell checker goes unused for a
sufficiently long time, then both the spell checker interface
502 and the spell checker code 504 may be separated from the
program by a shrinker.

By contrast, a word processor might also include a format
conversion routine which is only invoked to convert files from
format A to format B. The conversion routine may be imple-
mented as a hidden adaptive feature 506 with no dialog boxes,
menu entries or other interface elements of its own. If the user
has not encountered any files in format A after several months
of'using the word processor, then the conversion routine code
504 may be removed by a shrinker.

The interface portion 502 may include menu text, icons,
information about the relative location of menu entries and
icons in the rest of the interface, and other visual elements and
their context. The code portion 504 may include byte codes,
compiled code, microcode, data segments or common areas
or other variables, threads, sockets, ports, and resources such
as text files for Help features, database files for email address-
ing features, and other digital information used in providing a
feature’s functionality.

Asillustrated in FIG. 5, adaptive features may be organized
in feature groups 508 for adaptive feature selection. In one
embodiment, feature groups 508 are optional in the sense that
either the group as a whole or individual features in the group
can be tracked and separated; in another embodiment, feature

5

10

20

25

30

40

45

55

60

65

12

groups are mandatory in that features can only be tracked and
separated as a group. Regardless, it will be appreciated that
even though the illustrated group 508 includes two visible
features 500 and three hidden features 506, a feature group
508 may generally contain one or more hidden features 506
and/or one or more visible features 500.

For example, in a word processor a Help group 508 might
contain the following adaptive features: keyword and topic
searches of Help documentation on the current program; key-
word and topic searches of Help documentation on a compet-
ing program; and a “wizard” tutorial to step users through
simple tasks using default options and parameters. Feature
groups 508 could also be defined to reflect user occupations or
other demographic characteristics. For instance, if attorneys
and scholars are more likely to use footnotes and automati-
cally generated tables of content, then those features could be
placed in an adaptive feature group 508 to facilitate their
removal from configurations of the program that are used by
other people.

Shrinkers

FIG. 6 further illustrates the shrinkers discussed herein. As
noted in connection with FIGS. 2 through 4, a shrinker may be
entirely resident on one computer, its functionality may be
distributed between two or more computers, or it may roam
the network as an agent. Using distributed shrinkers and/or
roaming shrinkers lets administrators readily gather informa-
tion about feature usage from multiple computers, and pro-
vides opportunities to coordinate adaptive features from a
central location. Regardless of where the shrinker function-
ality is located, however, as a whole it contains at least a
tracking facility 600 and a separation facility 602; these facili-
ties are discussed below.

In some embodiments the shrinker also includes an adap-
tive feature licensing facility 604 which monitors installation,
trial use, paid-license use, and removal of adaptive features,
both individually and in feature groups. The license facility
604 presents users with offers to license features, receives
acceptances or refusals, and in some embodiments coordi-
nates payment of license fees through electronic funds trans-
fers. The license facility 604 also commands the local
shrinker, directly or by way of a remote shrinker, to remove
unlicensed adaptive features when they would otherwise be
used without authorization.

In some embodiments the shrinker also includes an adap-
tive feature distribution facility 606 which makes additional
adaptive features available to managed computers. The dis-
tribution facility 606 may be implemented to use a “pull”
approach in which users on managed computers access a
catalog of available features and select the features to be
installed, and/or a “push” approach in which the managed
computers are sent demonstration copies of available fea-
tures, which are installed automatically but which may also
be removed by the local shrinker. In either case, the distribu-
tion facility 606 may coordinate with the licensing facility
604.

Tracking Facility

The illustrated tracking facility 600 includes a user identi-
fication 608, a security and integrity means 610, a usage
history monitor 612, and zero or more adaptive feature
records 614. For purposes of illustration only, FIG. 6 shows
three adaptive feature records 614.

The user identification 608 allows the shrinker to associate
a given set of adaptive feature records 614 with a given user
(or group of users). The user identification 608 may be
implicit or explicit. Many application programs do not
require a user to log in or provide other identification, and do
not authenticate the user’s right to run the application. The

US 9,052,982 B1

13

same is true of many operating systems, at least on many
single-user workstations, laptops, and personal computers. In
such cases the user identification 608 may be implicit. On the
other hand, such software may also require entry of a user
name when it is installed, and/or have a serial number embed-
ded in it for license administration. The user name or serial
number may then serve as an explicit user identification 608.
On networks which require login and/or authentication of
users, an explicit user identification 608 can be obtained
during the login and/or authentication process.

If present, the security and integrity means 610 may pro-
vide one or more of the following benefits: preventing sub-
stitution of viruses or other harmful code for legitimate adap-
tive feature code that is being sent to the remote shrinker for
archival or being sent from the remote shrinker to the man-
aged computer for installation there; preventing unauthorized
modifications or replacement of shrinker code; preventing
unauthorized changes to the adaptive feature records 614 of a
given user; preventing unauthorized invocation of the sepa-
ration facility 602; and preventing other unauthorized uses of
the inventive system.

These benefits may be obtained using digital signatures,
public key infrastructures, certificates, credentials, and other
security and integrity tools and techniques familiar to those of
skill in the art. For instance, adaptive feature records 614 may
be encrypted using a key known only to the relevant shrinker
(s); adaptive features and adaptive feature records 614 may be
digitally signed to make tampering detectable; and local
shrinkers may be required to authenticate themselves to the
operating system or to the adaptive program or to a remote
shrinker before they are allowed to modify the adaptive pro-
gram.

The usage history monitor 612 monitors the actual use of
adaptive features. This may be done in various ways. The
monitor 612 may be implemented as separate routine, a sepa-
rate thread, a separate process, or a separate program, in
relation to the adaptive features being monitored. Some adap-
tive features may be implemented to signal the monitor 612
each time they are invoked. Others only signal the first time
they are invoked or in response to a query from the monitor
612. Other adaptive features keep an internal log; some trans-
mit the log to the monitor 612 periodically, while others send
the log signal only in response to certain events such as
program clean-up and exit.

Signaling between the monitor 612 and the monitored
adaptive features may be accomplished using shared
memory, remote procedure calls, a shared file, or other means
commonly used to communicate between routines or threads
or processes or programs or computers. Suitable choices
depend on the relative location and nature of the adaptive
feature and the monitor 612, but are readily identified by those
of'skill in the art. The raw usage data may include keystrokes,
mouse operations, network packets, and other low level data,
which are then associated with particular adaptive features or
permanent features. Much raw data will never be received by
the monitor 612 or will be discarded by the monitor 612 as
irrelevant. For instance, the content placed by users in a
spreadsheet or paint document or word processed text often
has little bearing on which features of the corresponding
application program are being most used; a particular key or
mouse button during text entry or drawing creation is often
not a command and hence not an adaptive feature.

Programmers implementing the monitor 612 may draw on
lessons learned from user models and user behavior recorda-
tion tools used by interface designers or knowledge system
builders to record user activity for later analysis by designers
and programmers. They may also draw on lessons learned

10

15

20

25

30

35

40

45

50

55

60

65

14

with profiling tools used to identify code (such as nested loop
bodies) in which local improvements will noticeably improve
overall program performance. Neural nets, genetic algo-
rithms, and other software approaches may also be used to
help the shrinker identify unused features and/or select fea-
tures for removal. Unlike conventional uses of these
approaches, however, the object of study here is the feature set
of the program as used by a given user or user group.

In one embodiment, each adaptive feature record 614
includes an ID which identifies the adaptive feature or adap-
tive feature group to which the record 614 pertains, a date
indicating when the feature or feature group was installed,
separation criteria, usage history, and status as a candidate for
removal. Separation criteria are discussed elsewhere herein;
another embodiment omits the criteria, making them implicit
in the separation facility 602 or explicit in records 618 in that
facility 602. As noted, adaptive feature records 614 may also
be kept for permanent features in order to identify features
which are tracked but not yet separable so they can be con-
sidered for re-implementation as tracked and separable, that
is, as adaptive.

In some embodiments the usage history in a feature record
614 is a simple tally indicating the total number of uses of the
feature since its installation; in other embodiments the date of
the most recent use is also stored. Status may be as simple as
a bit which indicates, when it is set, that the feature should be
removed from the program at the next opportunity. Alterna-
tively, status may be more complex. For instance, status may
distinguish between features that are still in the trial period
and those that are not, between separable features and perma-
nent ones, between features that are members of a given
feature group and those that are not, and/or between features
that should be removed immediately in response to a user
request and those that can wait until the remaining free disk
space falls below a threshold. Other approaches to feature
records 614 are also possible, provided that they allow the
shrinker to monitor feature usage and (sooner or later) to
separate unused features.

Separation Facility

The separation facility 602 separates unwanted or unused
adaptive features from the program(s) which included them.
In the embodiment shown in FIG. 6, the separation facility
602 also includes criteria for determining when features are
unwanted or unused; the tracking facility 600 compares these
criteria to the data from the usage monitor 612 and/or the
feature records 614 to determine the candidate status of the
various features. The embodiment shown in FIG. 6 includes
shared separation criteria 616, several examples of feature-
specific criteria 618, a compressor 620, a local archiver 622,
a remote archiver 624, and a remover 626. In alternative
embodiments, the separation criteria 616 and 618 reside
instead in the tracking facility 600.

The shared criteria 616 are separation criteria shared by
two or more features, up to and including criteria shared by all
features. For instance, the shrinker may recognize a “mini-
mize” or “start over” command which separates from the
program all adaptive features, or separates all adaptive fea-
tures added after a specified date. Likewise, most or all fea-
tures may be subject to separation if a specified condition
occurs, such as the expiration of a trial period, or a failure to
obtain (or renew) a license. A feature group may be subject to
separation if resources needed by it are not present. For
instance, floppy disk I/O features are not needed on a com-
puter which has no floppy disk, and networking features are
unnecessary on a standalone computer.

By contrast, each of the feature-specific criteria 618 are
separation criteria directed at a specific feature. For instance,

US 9,052,982 B1

15

a spell-checker might be subject to separation only if the user
specifically requests its removal. Likewise, each of two fea-
tures might be subject to separation only if the other feature is
also unused or unwanted; a feature that displays text in dif-
ferent colors and one that prints text in corresponding colors
provide one example. Features may also be prioritized, so that
relatively obscure ones tend to be separated before less
obscure ones; obscurity may be determined by analysis of
tracking facility 600 information from many computers or on
other grounds.

In addition to or in place of the examples above, other
separation criteria may also be used. On the one hand, system
resources such as the available memory and disk space, and
the recommended and actual processor type and speed, may
be factors. For instance, in one embodiment no adaptive
shrinking is performed, unless it is expressly requested by the
user, until the disk is at least 90% full or less than 50 Mega-
bytes of free disk space remains, whichever happens first. The
threshold values of 90% and 50 Megabytes are default values
which can be overridden by individual users and/or by a
network administrator.

Usage may also tracked to determine how recently and how
frequently the feature has been used. For instance, features
which have never been used are good candidates for separa-
tion if the program has been in use each day for the past six
months. However, some features might be marked as non-
separable or “permanent.” For example, in a word processor
or spreadsheet permanent features will normally include the
file open, save, and close features.

In some embodiments, the user’s familiarity with the pro-
gram is tracked by the tracking facility 600 and no features are
separated until the set of features being used has stabilized.
This prevents features from being removed, not because they
are unwanted, but merely because the user has not yet mas-
tered the full set of features the user will eventually settle on.
For instance, suppose a user eventually settles on an actively
used feature set of three dozen word processor commands,
one of which creates footnotes. It may well be the case that the
footnote feature was not used for a month after the software
was installed, but is nonetheless important to the user and will
be used about once a week thereafter. Separating the foot-
notes feature too early will inconvenience the user.

On the other hand, there may be a flurry of activity when a
program is new, in which many features are tried. One or two
uses soon after installation should not immunize a feature
from later removal if the user no longer needs the feature and
resources become scarce. Methods for determining when to
remove a feature are discussed further in connection with
FIG. 11.

Conventional tools and techniques are generally used to
add code to programs rather than remove it. However, when
implementing adaptive features to provide separability those
of'skill in the art may benefit from such tools and techniques
as component models like COM or DCOM or OLE, object-
oriented programming models, Java servlet and applet mod-
els, languages such as Modula-2 and Ada which encourage
hiding details in local modules or packages, dynamic recon-
figuration techniques, and other computer programming tools
and examples.

Word Processor Example

FIGS. 7 through 10 illustrate a word processor constructed
according to the invention. FIGS. 7 and 8 illustrate the word
processor before several adaptive features are removed, and
FIGS. 9 and 10 show the word processor after the features are
removed. The entire word processor is not shown; for clarity,
only enough is shown to illustrate the invention.

10

15

20

25

30

35

40

45

50

55

60

65

16

A word processor graphical user interface 700 includes
conventional elements such as a scroll bar 702 and a display
area 704. The interface 700 also includes a menu bar 706
which appears to the user to be a conventional menu bar
having menu bar entries such as a Format entry 708 and a
Help entry 710. In the illustrated state, the Format entry 708
is selected and thus a menu 712 appears, presenting both
available menu entries such as an EZFormat entry 714 and a
grayed-out (currently unavailable) Heading Numbering entry
716. Although specific menu entries, menu bar entries, con-
ventional graphical user interface (“GUI”) components, and a
word processor are used here to illustrate the invention, those
of skill will appreciate that the invention may be used with
other menu entries, other menu bar entries, other GUI or text
or application program interface (“API”) interface compo-
nents, and with other applications or systems-level programs.

As shown in FIG. 8, the word processor program 408
whose interface is shown in FIG. 7 contains both adaptive
features 410 and permanent features 412. The adaptive fea-
tures 410 include, by way of example, an EZFormat interface
800 and corresponding EZFormat code 802, as well as a
Columns interface 804 and corresponding Columns code
806.

The interface portions 800, 804 include the text of the menu
712 entries, and any dialog boxes, icons, graphics, or other
interface elements that are specific to the adaptive features
and so might be displayed when the features are invoked
through the menu 712. The interface portions 800, 804 also
include identification of the menu 712 as the place to 408, and
any other context needed to modify the interface when the
features are added or removed.

The code portions 802, 806 include the supporting code (as
opposed to interface code) which performs the task(s)
requested by invoking the features. For instance, the code 806
might include code which divides text into two columns and
then hands the columns to display code for display in the area
704. In general, supporting code for an adaptive feature may
include compiled code, byte codes, assembly, and other
instructions, as well as data structures, variables, text files,
and other resources specific to the feature.

The permanent features include an interface adapter 808
and a code adapter 810. In an alternative embodiment which
allows the shrinker to remove itself, the adapters 808, 810 are
implemented as part of a shrinker adaptive feature. The per-
manent features also include a set of basic 110 routines 812
for keyboard, mouse and screen 1/O, and a main loop 814
which obtains a command from the user and then passes
control to the appropriate service routine or event handler.
Some of the service routines and event handlers may be
adaptive features, or a catch-all event handler may be used as
the initial starting point for servicing every command that
invokes an adaptive feature.

The adapters 808, 810 adapt the program by removing (or
in some embodiments, by removing or adding) adaptive fea-
tures. For instance, the interface adapter 808 removes menu
712 entries and/or menu bar 706 entries when the correspond-
ing adaptive features are removed. In this sense, the interface
adapter 808 and the GUI 700 together provide functionality
similar to a conventional configurable interface.

However, the corresponding code (such as code 802 and/or
806) is not merely made inaccessible while nonetheless
remaining in the program. Instead, the code portion is
removed from the program by the code adapter 810. The code
may be unloaded from memory immediately, or the program
408 may simply omit the code when the program starts run-

US 9,052,982 B1

17

ning next time. As noted elsewhere herein, the removed code
may be archived locally, archived remotely, or simply
deleted.

Those of'skill will appreciate that the program 408 must be
designed to run properly with our without any combination of
the adaptive features. In particular, the features and/or feature
groups must be implemented as independent modules or
packages or subroutines or threads or other components.
Moreover, communication with adaptive features is allowed
only by way of the main loop 814 and/or an adaptive feature
event handler that “knows” which adaptive features can be
invoked in the program’s current configuration and which
traps any attempt to access instructions or data which are not
present in the current program configuration.

FIG. 9 shows the GUI interface 700 after the following
adaptive features have been removed: Help, EZFormat,
Styles, Watermark, Frame, Image. The interface adapter 808
has accordingly removed the menu bar entry 710 for the Help
features group, as well as the menu 712 entries for the EZFor-
mat, Styles, Watermark, Frame, and Image features. The
menu 712 has been replaced by a correspondingly simpler
menu 900. The code portions corresponding to the Help,
EZFormat, Styles, Watermark, Frame, and Image features
have also been removed. Thus, as illustrated in FIG. 10,
neither the EZFormat interface nor the EZFormat code
remains in the reconfigured program 408.

Method Examples

FIG. 11 illustrates feature selection methods according to
the present invention. During a triggering step 1100, some-
thing occurs to trigger a search for adaptive features that are
presently candidates for removal from a program. In various
embodiments, the search may be triggered periodically by a
local or remote shrinker thread or background process, or it
may be triggered expressly by a local or remote user com-
mand, or it may be triggered by a certain event such as loading
the program for execution or cleaning up before exiting the
program.

The search may also be triggered by conditions that sug-
gest system resources are becoming scarce and should be
freed, if possible, by removing unwanted or unnecessary
program features. For instance, the search may be triggered
when available storage space passes a predetermined thresh-
old, as when disk free space falls below a predetermined
threshold or when “lack of RAM” errors are detected. The
program may also monitor itself and trigger the search when
the complexity of its user interface passes a threshold, as
measured by the nesting level of commands, the total number
of commands, the number of commands in a given menu, the
percentage of the screen display consumed by the interface,
or another metric.

The search for removal candidates may also be performed
proactively. For instance, the search may be triggered by a
manager computer 402 or 404 before it sends a new set of
demonstration adaptive features to the managed computer
400.

During a searching step 1102, the shrinker searches the
feature records 614, separation criteria 616 and 618, and
possibly other data such as the user identification 608, to
identify features which are presently good candidates for
removal.

For instance, a step 1104 identifies features which have
been used once or a few times, but only shortly after their
installation in the program; they have not been used since.
The assumption is that the user initially investigated the fea-
tures and then decided they were not useful. The meaning of
“shortly” varies, but suitable measures might be “within a
week of installation of the feature”, or “within the first 10% of

25

30

40

45

50

55

60

18

the calendar time now elapsed since installation of the fea-
ture” or “within the first 5% of the program execution time
now elapsed since installation of the feature”, for instance.

Likewise, a step 1106 identifies features which have been
explicitly tagged for removal by the user. These are unwanted
features which should be removed unless doing so cripples
the program. As noted, adaptive features should be imple-
mented without dependencies on other features, to the great-
est extent possible, in order to make separation of a given
adaptive feature possible without crippling the program.

A step 1108 identifies features which have been unused for
a long period. The duration of non-use may be measured by
the elapsed calendar time regardless of actual program use, or
may be measured more accurately by the total elapsed time
during which the program was in use. What qualifies as a
“long time” is a design choice, but it may be influenced by
factors such as how frequently the program is used, how
extensive the program’s feature setis, and the ease with which
a removed feature can be restored if the user asks for it. For
instance, in a typical word processor which is used almost
every day for eight hours or more by only one person, a
feature that has not been used after two or three months would
be a good candidate for removal.

A step 1110 identifies features that require hardware which
is not present. For instance, some computers have no floppy
disk drive, some have no local hard disk, and some have no
mouse. More subtle examples include color printing capabil-
ity on a system that has no color printer, numeric coprocessor
libraries on systems that have no numeric coprocessor, and
networking code on standalone systems. Features that require
missing hardware are needed, if at all, only after that hard-
ware has been added to the system. Thus, the features may be
removed and archived, to be restored later if and when they
are needed, instead of forcibly storing them in the user’s
active working environment where they consume scarce
resources and clutter up the interface.

A step 1112 identifies features for which a license is needed
but has not been granted. The user may be given the option of
obtaining a necessary license during this step; if the license is
sought and granted, the feature in question is not ultimately
identified by the step 1112. Features which are present during
atrial period or as free demonstrations on some other basis are
also not ultimately identified by the step 1112.

A step 1114 identifies features which fall outside a statis-
tically defined set of stable features. During a user’s initial
encounter with a program, a user often tries various features
to investigate their behavior. Over time, users tend to settle on
arelatively stable set of features, with the other features being
rarely or never used. Statistical analysis of the data obtained
by the usage monitor 612 can be used to identify the features
in the stable set, and by implication, those which are not in the
stable set. A neural net could also be trained to recognize the
stable feature set of a given user. A definition of the stable set
can be used to prioritize features for removal, by giving those
furthest from the stable set the highest priority for removal.

Finally, a step 1116 identifies features that are typically
unused by users that share specific demographic characteris-
tics with the current user. For instance, it may be that users in
the public relations department rarely or never use a Default
Document Templates feature, working instead from a library
of existing documents by changing names, addresses, dates,
and other facts without modifying the underlying document
format or layout. In that case, the step 1116 could be identified
ifthe current user is identified by the user identification 608 as
a member of the public relations department and the Default
Document Templates feature is implemented as an adaptive
feature in the given application program(s).

US 9,052,982 B1

19

The steps 1104 through 1116 are illustrative examples.
Other steps could also be used to identify features as good
candidates for removal. Moreover, some or all of the steps
1104 through 1116 could be omitted in other embodiments of
the step 1102, and whichever steps are present could be per-
formed in a different order and/or concurrently.

During a selecting step 1118, zero or more of the features
identified during the searching step 1102 are selected for
removal. Selection may be accomplished by removing steps
with or without final approval by the user. For instance, fea-
tures that were apparently investigated by the user and then
ignored (identified during step 1104) may be removed with-
out further inquiry, while features which have never been
invoked by the user (identified during step 1108) might be
removed only after the user interactively confirms that they
should be removed. In the later case, the user may also indi-
cate whether the identified features should be archived or
deleted entirely.

Other factors may also influence selection of features dur-
ing the step 1118. If the search was triggered during step 1100
by alack of disk space or a crowded set of menus, for instance,
then two approaches are possible. The first approach removes
all features identified during step 1102, subject to any user
approvals deemed necessary. The second approach prioritizes
the identified features and removes only as many features as
is necessary to get the triggering condition (disk free space,
menu complexity, and so on) back on the other side of the
triggering threshold. Features may be prioritized by listing
them in order of decreasing resource requirements; for
instance, one embodiment gets rid of the largest and most
complex features first. Features may also be prioritized
according to their distance from the stable set of features, so
the least used features are removed first. Of course, other
prioritizations may also be used.

During a removing step 1120, selected adaptive features
are removed. The code portions 504 and the interface portions
502 (if any) of the adaptive features are separated from the
rest of the program, either immediately or the next time the
program is invoked.

During a required step 1122, the removed portions are
either archived or deleted completely. Archival may employ
data compression tools and techniques such as run-length
encoding, differential encoding, original or adaptive Huft-
man coding, dictionary compression methods, and others
familiar in the art. Deletion may require removal from non-
volatile storage such as a hard disk, or it may be as simple as
freeing RAM memory containing the portion and noting the
unavailability of the deleted portions to avoid run-time errors.
Registry files and software component managers may be
notified or updated as needed. The licensing facility 604 is
notified if licensed adaptive features are removed.

A required program updating step 1124 modifies the pro-
gram GUI interface to reflect removal of user interface por-
tions 502 (if any), and also modifies the program code to
reflect removal of the supporting code portions 504 of the
adaptive features that are being removed. These modifica-
tions are illustrated and discussed in connection with FIGS. 7
through 10 and elsewhere.

The archival and deletion may involve coordination
between local and remote shrinkers so the adaptive features
are archived and/or deleted locally and/or remotely. In some
cases in some embodiments, an optional notifying step 1126
therefore notifies remote shrinkers of the planned (or com-
pleted) removal. In response, the remote shrinker may take
steps to update feature usage statistics, archive the removed
features, notify network administrators, refuse authorization

10

15

20

25

30

35

40

45

50

55

60

65

20

for certain removals, and otherwise behave as discussed in
connection with FIGS. 3 and 4 and elsewhere herein.

During an optional user configuration record updating step
1128, configuration credentials or files or other records are
updated to reflect the removal(s). This allows the program
changes to appear in another program which has some or all
of the same adaptive features. Thus, if the user removes a
Grammar Checker feature from a word processor, it will also
be removed from a spreadsheet and other programs used by
that user (possibly subject to express user consent). The user
configuration record also allows the program changes to
appear in the “same” program on a different computer when
adaptive features are being removed from a mobile user’s
program. For instance, when the user starts the word proces-
sor on a different machine, the removed EZFormat feature
does not reappear.

Inter-Shrinker Signals

FIG. 12 illustrates components of some of the signals
which transmit information between local shrinkers and
remote shrinkers according to the present invention. Mem-
bers of one family 1200 of inter-shrinker signals each include
one or more of the illustrated components; a given signal
1200 may organize the components in a different order than
that shown. The signal 1200 may also be packetized or oth-
erwise embodied in a “wire” such as a network communica-
tions link 106, and it may be supplemented by address, error
management, network protocol, and other information.

An optional security and integrity information component
1202 includes one or more credentials 1204 for authenticat-
ing one shrinker to another shrinker. The credentials may be
formed using symmetric keys, public keys, checksums, and/
or other familiar tools and techniques. The signal 1200 may
also include one or more digital signatures 1206 to detect
tampering with the signal’s contents. For instance, one sig-
nature 1206 might be formed using the contents of each
credential, and another signature 1206 might be formed using
those contents of the signal 1200 which relate directly to
adaptive feature selection.

In some embodiments, the signal 1200 includes one or
more computer identifications 1208. For instance, managed
computer identifications 1210 identify managed computers
such as the computers 300, 302, 400, and manager computer
identifications 1212 identify manager computers such as the
computers 304, 402, 404. Network addresses, port numbers,
socket numbers, global universal identifiers (“GUIDs”), uni-
versal resource locators (“URLs”), and/or other identifiers
may be used to identify the managed or manager computers.
The computer identifications may be used for weak forms of
authentication, for administrative record-keeping, for license
management, for demographic database maintenance, and/or
other purposes.

Unless the operations performed or requested are implicit
in the shrinker code, the signal 1200 includes one or more
operation records 1214. These may be organized in various
ways, two of which (program-centric and feature-centric) are
illustrated.

A program-centric record 1216 identifies the adaptively
shrinkable program and associates with that identification
one or more feature records 1218 representing activity involv-
ing adaptive features of the identified program. Each feature
record 1218 includes a feature identification, and at least a
status and/or requested status. For instance, a given feature
record 1218 might identify the Help feature group with a
status “marked for removal; will be deleted locally; please
delete remotely”, or it might identify the individual EZFor-
mat feature with a status “removed; archived locally”. The
feature record 1218 may contain information that is also

US 9,052,982 B1

21

found in the feature usage history in the record 614 and/or in
the feature-specific separation criteria in the record 618.

Instead of using program-centric records 1216, or in addi-
tion to such records 1216, the operations 1214 may include
one or more feature-centric records 1220. A feature-centric
record 1220 identifies the adaptive feature and associates with
that identification one or more program records 1222 to rep-
resent activity involving the identified feature in the identified
adaptively shrinkable programs. For instance, a record 1220
might indicate that a Language feature has been removed
from both a word processor and a presentation graphics pro-
gram.

If one or more adaptive features are being sent from man-
aged computer(s) to manager computer(s), then the interface
502 and code 504 portions of the features are included as a
signal component 1224. In the illustrated embodiment, the
implementation portions 502, 504 of two visible features
1226, 1228 and one hidden feature 1230 are part of the signal
1200. Of course, other signal embodiments may include more
or fewer portions 502 and/or 504.

Zero or more pieces of additional information 1232 may
also be included in the signal 1200. For instance, shrinker
updates, remote user configuration files, and other informa-
tion discussed herein may be sent between the managed and
manager computers.

Summary

In summary, the present invention provides a novel way to
tailor software to meet an individual’s needs without sacri-
ficing the flexibility provided by making a wide range of
features available to the user population as a whole. After a
given program has been used by someone long enough to
identify the features that are likely to be needed, the other
features can be removed automatically. This saves disk space,
saves memory space, reduces program load time, and reduces
the need for ever-more-powerful processors. More impor-
tantly, it simplifies the software interface presented to the user
without sacrificing functionality the user cares about.

A particular order and grouping may be indicated in
examples for method steps of the invention or systems or
signals for the invention. However, those of skill will appre-
ciate that the steps illustrated and discussed in this document
may be performed in various orders, including concurrently,
except in those cases in which the results of one step are
required as input to another step. Steps may also be repeated,
or combined, or named difterently. Likewise, steps or system
or signal components may be omitted unless called for in the
claims, regardless of whether they are expressly described as
optional in this Detailed Description.

Although particular methods embodying the present
invention are expressly illustrated and described herein, it
will be appreciated that apparatus, article, and signal embodi-
ments may be formed according to methods of the present
invention. Unless otherwise expressly indicated, the descrip-
tion herein of methods of the present invention therefore
extends to corresponding devices and signals, and the
description of devices and signals of the present invention
extends likewise to corresponding methods. Unless otherwise
stated, any list of included items is exemplary, not exclusive
of other items; “includes” means “comprises” not “consists
of”

The invention may be embodied in other specific forms
without departing from its essential characteristics. The
described embodiments are to be considered in all respects
only as illustrative and not restrictive. Headings are for con-
venience only; discussions of a given aspect of the invention
may appear in various places throughout the description. Any
explanations provided herein of the scientific principles

20

25

35

40

45

50

55

60

65

22

employed in the present invention are illustrative only. The
scope ofthe invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed and desired to be secured by patent is:

1. A method comprising:

receiving a feature record corresponding to a modular fea-

ture of a computer program,

determining, from the feature record, a history of invoca-

tion of the modular feature by one or more users;
determining, from the feature record, a feature-specific
separation criterion associated with the modular feature;
determining, from the feature record, a status of the modu-
lar feature being one of a permanent feature and a
removable feature;
comparing, using a computer system, the history of invo-
cation to the feature-specific separation criterion to
assess a candidate status of the modular feature for
removal; and

selecting the modular feature for removal from the com-

puter program based on the candidate status of the
modular feature.

2. The method of claim 1 further comprising:

removing a code portion associated with the modular fea-

ture from the computer program based on the selecting
of the modular feature for removal.

3. The method of claim 2, wherein the removing of the code
portion includes deleting the code portion.

4. The method of claim 2, wherein the removing of the code
portion includes archiving the code portion on a remote com-
puting system.

5. The method of claim 1, wherein the feature-specific
separation criterion designates the modular feature as a
removal candidate based on the modular feature not being
invoked during a particular period of time.

6. The method of claim 1, wherein the feature-specific
separation criterion designates the modular feature as a
removal candidate based on the modular feature being
invoked during a period of time defined by an installation time
of'the modular feature and not being invoked during a subse-
quent period of time.

7. The method of claim 1,

wherein the selecting of the modular feature for removal is

further based on the status of the modular feature.

8. The method of claim 1, wherein the feature-specific
separation criterion designates the modular feature as a
removal candidate based on a system hardware requirement
not being met.

9. The method of claim 1, wherein the feature-specific
separation criterion designates the modular feature as a
removal candidate based on a license status of the modular
feature.

10. A method comprising:

detecting a trigger configured to initiate a search for

removal candidate features;
identifying a feature of a computer program that can be
removed from the computer program while allowing the
computer program to run other different features;

evaluating, using a computing system, a separation crite-
rion specific to the feature;
tracking a history of invocation of the feature to determine
a pattern of invocation of the feature;

comparing the pattern of invocation of the feature to the
separation criterion to determine a status of the feature,
wherein the status of the feature being one of a perma-
nent feature and a removable feature; and

US 9,052,982 B1

23

selecting the feature for removal from the program based

on the status of the feature.

11. The method of claim 10, wherein the trigger corre-
sponds to a complexity of a user interface of the computer
program.

12. The method of claim 10, wherein the trigger corre-
sponds to a forthcoming release of a new feature.

13. The method of claim 10, wherein the trigger corre-
sponds to an available computing resource falling below a
threshold.

14. An apparatus comprising a non-transitory, tangible
computer readable storage medium storing instructions that,
when executed by a computer processor, carry out:

identifying a modular feature of a computer program;

identifying a separation criterion of the modular feature
from an adaptive feature record corresponding to the
modular feature;
tracking a history of invocation of the modular feature to
determine a pattern of invocation of the modular feature;

comparing the pattern of invocation of the modular feature
to the separation criterion to determine a status of the
modular feature, wherein the status of the modular fea-
ture being one of a permanent feature and a removable
feature; and

identifying the modular feature for removal based on the

status of the modular feature.

15. The apparatus of claim 14, wherein the storage medium
has further instructions that carry out:

assigning a priority for removal to the modular feature

relative to other modular features of the computer pro-
gram.

10

15

20

25

24

16. The apparatus of claim 14, wherein the storage medium
has further instructions that carry out:

identifying computer hardware associated with the modu-
lar feature; and

determining whether the computer hardware associated
with the modular feature is present in a computing sys-
tem, wherein the removal candidate status is further
determined by the determining of whether the computer
hardware associated with the modular feature is present.

17. The apparatus of claim 14, wherein the storage medium
has further instructions that carry out determining a licensing
status of the modular feature, and wherein the removal can-
didate status of the modular feature is further determined by
the licensing status.

18. The apparatus of claim 14, wherein the storage medium
has further instructions that carry out:

removing a code portion associated with the modular fea-

ture from the computer program based on the identifying
of the modular feature for removal.

19. The apparatus of claim 18, wherein the instructions that
carry out the removing of the code portion include further
instructions that carry out deleting the code portion from a
computer system.

20. The apparatus of claim 18, wherein the instructions that
carry out the removing of the code portion include further
instructions that carry out archiving the code portion on a
remote computing system.

#* #* #* #* #*

